

Welcome to pop-config

pop-config is a core component of POP and a key part of POP’s ability to “app merge” applications.

The word “config” has a lot of different meanings depending on context, so it’s important that we
clarify the capabilities of pop-config. In the world of POP, think of
“config” as referring to command-line arguments for a program, plus a bunch of other cool
functionality related to command-line arguments. It might be best to pretend pop-config is
actually named pop-args. This would be a more accurate name and better convey its functionality.

The reason why the name pop-config is used may be that pop-config has a lot of very
useful functionality, and taken as a whole, can often be used to manage the entire configuration
of your application. For example, pop-config allows you to:

	Define command-line arguments for your application.

	Optionally set these command-line arguments via environment variables.

	Optionally source these command-line arguments from a file.

	Merge in plugins which augment the command-line arguments of your application.

The important thing to keep in mind is that all this functionality is argument-centric, and
yes, many applications will find their configuration needs fully satisfied by pop-config.

But it’s really pop-args :) Just keep that in the back of your head. It will help.

Contents:

	Introduction: conf.py File

	Dictionaries Overview

	Steps for Using pop-config

	CONFIG Dictionary
	Basic Settings

	Destination

	Location

	CLI_CONFIG Dictionary
	Options

	Positional Arguments

	Accepting Environment Variables

	Actions

	Number of Arguments

	Type

	Render

	SUBCOMMANDS Dictionary
	Detecting the Subparser

	Advanced Topics
	Root Rewriting with root_dir

	App Merging
	Source

	Dyne

Indices and tables

	Index

	Module Index

	Search Page

Introduction: conf.py File

pop-config uses a conf.py file to define its functionality.
The conf.py file should be located in the main directory of
your POP project. So let’s assume the directory for your source
code is my-project, and your POP project inside it is called
my_project (as created by pop-seed or pop-create).
In this case, your conf.py file will be located at
my-project/my_project/conf.py, and directories for POP subs
for your project will appear next to the conf.py (in
the same directory.)

One conf.py exists per POP project.
conf.py can contain four Python dictionaries: CONFIG, CLI_CONFIG, SUBCOMMANDS
and DYNE. Each dictionary serves a specific purpose. Between them
you can define how the command-line arguments are presented, all configuration
defaults, help documentation, etc. Here are the purposes of each dictionary:

Dictionaries Overview

DYNE:

The DYNE dictionary is used to allow your POP project to define
dynamic names [https://pop.readthedocs.io/en/latest/topics/subs_overview.html#dynamic-name]. Dynamic names are plugin subsystems that are shared
across multiple projects and dynamically discovered. This allows you
to, for example, have one “super-command” which can find a bunch of
plugins that were installed by multiple different Python projects.
All the plugins are organized under a dyne name. Each project maps
the dyne name to a path inside its source code. The plugins in this
directory are made available to other projects when the dyne is added
via a call to hub.pop.sub.add(dyne_name="foo"). Then hub.foo.plugin_name_1,
hub.foo.another_plugin will be available on the hub. You can also
introspect on the plugins available via for plugin in hub.foo:,
for example.

CLI_CONFIG:

CLI_CONFIG is a dictionary that defines command-line arguments for
your application. The command line arguments defined here will be
accessible at hub.OPT.pop_project_name.foo or
hub.OPT["pop_project"]["foo"] (assuming an option of
--foo), for example. Each POP project has a single namespace for
command-line options. The keys and values used in CLI_CONFIG will
be very familiar if you have used the argparse module in Python.

Please see the CLI_CONFIG Dictionary section for more details on how to use
CLI_CONFIG.

CONFIG:

CONFIG is a dictionary that defines “configuration” for your application,
which are settings, but ones that are not available on the command-line.
Configuration defined in CONFIG, while not settable on the command-line,
is still accessible via hub.OPT.

Where are CONFIG settings sourced from, if not from the command-line?
Typically, they are simply default values, potentially overridable via
a pop-config YAML configuration file.

Please see the CONFIG Dictionary section for more details on how to use
CONFIG.

SUBCOMMANDS:

Think of SUBCOMMANDS as a companion to CLI_CONFIG. SUBCOMMANDS
allows you to define higher-level actions on the command-line,
each with their own separate arguments. For example, you may have
mycmd list as well as mycmd commit. The subcommand is specified
as just a literal string. Command-line arguments defined in CLI_CONFIG
can be specified as being specific to a subcommand or can be made available
to all subcommands.

Please see the SUBCOMMANDS Dictionary section for more details on subcommands.

Steps for Using pop-config

To use pop-config, at the bare minimum you will want to create a
conf.py for your project at my-project/my_project/conf.py. It’s important
to note that there is only one conf.py per POP project, and only one set of
config per conf.py.

In conf.py, you will define CLI_CONFIG to specify all command-line
options for your application. Here is an example of a CLI_CONFIG
definition:

CLI_CONFIG = {
 "force": {"options": ["--force"], "action": "store_true", "default": False},
 "nopush": {"options": ["--nopush"], "action": "store_true", "default": False},
 "prod": {"options": ["--prod"], "action": "store_true", "default": False},
 "db": {"options": ["--db"], "action": "store_true", "default": False},
 "release": {"positional": True},
}

Then, somewhere in the startup code of your command, you will have something
similar to the following Python code:

hub.pop.sub.add("my_project")
or hub.pop.sub.add(dyne_name="my_project") if you are using a dynamic name
hub.pop.config.load(["my_project"], cli="my_project")

After this last command finishes, the config defined in conf.py as well as
any user-specified arguments will be available
on the hub at hub.OPT["my_project"].option_name. If you defined any
subcommands via SUBCOMMANDS, you will be able to determine the subcommand
specified by inspecting the hub.SUBPARSER variable, which is a string that
specifies the subcommand. Any subcommand-specific options will be accessible
at hub.OPT["my_project"].option_name – there is no special hierarchy for
subcommand options – they are just mapped to the same place as regular options.

Once this initialization is done, then various parts of your application can look
at hub.OPT["my_project"] and use the settings found to influence its behavior.
Because hub.OPT is globally available to all POP functions, you do not need
to pass around these options as arguments to functions and can read them from
a central, consistent location on the hub.

CONFIG Dictionary

The CONFIG dictionary is used to define settings in your application
that may or may not also be settable on the command-line. This means that
the bulk of your application’s settings will be defined in the CONFIG
dictionary, even if only to serve as a place to define their default
setting and help string.

CONFIG = {
 "name": {
 "default": "frank",
 "help": "Enter the name to use",
 },
}

This simple example creates a config setting called name and sets
sets the documentation for the configuration value
and what the default value should be.

If we then wanted to allow name to be set from the command-line, we
would add a companion entry to CLI_CONFIG, which might look like this:

CLI_CONFIG = {
 "name": {}
}

We could now set the value of name via the --name foo or
--name=foo option.

It is also possible that we may have things in CONFIG that simply
aren’t settable via the command-line and are never intended to be.
These options can be overridden using pop-config configuration
files (see Using Configuration Files).

Basic Settings

Nearly every config setting needs to have 2 basic options, default and
help. These are very self explanatory, default sets the default value
of the option if no option is passed and help presents, not only the
command line help, but is also the single source of documentation for the
option.

Here is a simple example:

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

This establishes the basic data for the setting and is all that is needed for
settings in the CONFIG dictionary.

Destination

When the argument is named “test” it will appear on the option namespace as
“test”. This may not always be desirable. If the name of the option and where
it needs to be stored differs, then use the dest option:

CONFIG = {
 "test": {
 "default": "Red",
 "dest": "cheese",
 "help": "What color to test",
 },
}

In this example the option will be stored under the name “cheese”, accessible
at hub.OPT["my_project"].cheese.

Location

Once the config system has been run, all configuration data will appear in the
hub.OPT namespace. This means that in our above example, if the system in
question is part of an app named myapp, then the option data will be present
at hub.OPT[“myapp”][“test”]. Because we use special dictionaries, it is also
possible to access this value as hub.OPT.myapp.test. This works fine as long
as there are no hyphens in your project name or option, in which case the index-based
access method can be used.

CLI_CONFIG Dictionary

The CLI_CONFIG dictionary is used to expose a setting on the command-line
of your application so it can be changed. Any values set in CLI_CONFIG
will inherit settings from CONFIG, so that if you have a name key
in both dictionaries, the final settings for the command-line options will
inherit the CONFIG settings, too.

All options that appear on the CLI need to be activated in the CLI_CONFIG
but the basic configuration needs to be in the CONFIG dictionary.

Pop-config uses Python’s venerable argparse under the hood to present
and process the arguments. Pop-config will also, transparently, passes
options from the dictionary into argparse, this makes Pop-config
transparently compatible with new argparse options that are made available.

This document is intended, therefore, to present the most commonly used
options, please see the argparse doc for more in depth data on available
options.

If the command-line option is very simple it can be as simple as just doing this:

CLI_CONFIG = {
 "test": {},
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

This would present a command-line option --test which can be specified
as --test=red or --test blue.

This document will cover all available options for the CLI_CONFIG,
remember that the default and help values should always be in the CONFIG
section. This is a POP best practice.

Options

By default the options presented on the command line are identical to the
name of the value. So for the above example the presented option would be
–test. If alternative options are desired, they can be easily added:

CLI_CONFIG = {
 "test": {
 "options": ["-t", "--testy-mc-tester", "-Q"],
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

Positional Arguments

Positional arguments are very common and can create a much more user friendly
experience for users. Adding positional arguments are easy. Just use the
positional argument:

CLI_CONFIG = {
 "test": {
 "positional": True,
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

It would now be possible to specify the argument as mycmd foo (without
needing a --test).

When working with multiple positional arguments the display_priority flag can be
used to control their order:

CLI_CONFIG = {
 "test": {
 "positional": True,
 "display_priority": 2,
 },
 "run": {
 "positional": True,
 "display_priority": 1,
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
 "run": {
 "default": "green",
 "help": "What color to run",
 },
}

In the above example the first argument will be run and the second will be test.

Accepting Environment Variables

Operating systems allow for configuration options to be passed in via
specific means. In Unix based systems like Linux and MacOS, environment variables
can be used. In Windows based systems the registry can be used. To allow
for an os variable to be used just add the os option:

CLI_CONFIG = {
 "test": {
 "os": "MYAPP_TEST",
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

Now the flag can be set by setting the environment variable MYAPP_TEST to
the desired configuration value.

Actions

Actions allow a command line argument to perform an action, or flip a switch.

The action option passes through to argparse, if the examples in this
document do not make sense you can also check the argparse section on
action.

A number of actions are supported by argparse. Arguable the most frequently
used actions are store_true and store_false:

CLI_CONFIG = {
 "test": {
 "action": "store_true",
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

A few other useful actions are append and count. If append is used then
every time the argument is used the option passed to the argument is appended
to the final list. The count option allows for the number of times that the
argument is passed to be counted up. This is useful for situations where you
want to specify what the verbosity of the output should be, so that you can
pass -vvv in a similar fashion to ssh.

Number of Arguments

The number of arguments that should be expected can also be set using the
nargs option. This allows for a specific or fluid number of options to
be passed into a single cli option.

The nargs option passes through to argparse, if the examples in this
document do not make sense you can also check the argsparse section on
nargs.

Integer (1)

Specifying an integer defines the explicit number of options to require:

CLI_CONFIG = {
 "test": {
 "nargs": 3,
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

The above example will require that exactly 3 options are passed to –test.

Question Mark (?)

One argument will be consumed from the command line if possible, and produced
as a single item. If no command-line argument is present, the value from
default will be produced.

Asterisk (*)

All command-line arguments present are gathered into a list.

CLI_CONFIG = {
 "test": {
 "nargs": "*",
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

Plus (+)

Just like ‘*’, all command-line args present are gathered into a list.
Additionally, an error message will be generated if there wasn’t at
least one command-line argument present.

Type

The value type can be enforced with the type option. A type can
be passed in that will be enforced, such as int or str.

CLI_CONFIG = {
 "test": {
 "type": int,
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

Render

Sometimes it is desirable to load up complex data structures from the
command line. This can be done with the render option. The render
option allows you to specify that the argument passed will be rendered
using a data serialization medium such as json or yaml.

CLI_CONFIG = {
 "test": {
 "render": "yaml",
 },
}

CONFIG = {
 "test": {
 "default": "Red",
 "help": "What color to test",
 },
}

This cli could then look like this:

myapp --test "Food: true"

Then the resulting value would be: {“Food”: True}

SUBCOMMANDS Dictionary

Sometimes it is desirable to have subcommands. Subcommands allow your CLI
to work in a way similar to the git cli, where you have multiple routines
that all can be called from a single command.

This example shows how multiple subcommands can be defined and utilized.

CLI_CONFIG = {
 "name": {
 "subcommands": ["test", "apply"],
 },
 "weight": {},
 "power": {
 "subcommands": ["apply"],
 },
}
CONFIG = {
 "name": {
 "default": "frank",
 "help": "Enter the name to use",
 },
 "weight": {
 "default": "150",
 "help": "Enter how heavy it should be",
 },
 "power": {
 "default": "100",
 "help": "Enter how powerful it should be",
 },
}

SUBCOMMANDS = {
 "test": {
 "help": "Used to test",
 "desc": "When running in test mode, things will be tested",
 },
 "apply": {
 "help": "Used to apply",
 "desc": "When running in apply mode, things will be applied",
 },
}

In this example we see that the option name will be available under
the subcommands test and apply. The option power will be available
only under the subcommand apply and the option weight is globally
available.

Detecting the Subparser

When the subparser is used the desired subparser is set on the hub as the variable
hub.SUBPARSER. This makes it easy to know what subparser is being used anywhere
in your code:

def run(hub):
 if hub.SUBPARSER == "test":
 run_test()
 elif hub.SUBPARSER == "apply":
 run_apply()

Global Subcommand Options

Sometimes an option should be made available to all subcommands, including the
root of the command. It is easy to do this! Just add the option _global_ to
the list of subcommands.

CLI_CONFIG = {
 "name": {
 "subcommands": ["_global_"],
 },
}
CONFIG = {
 "name": {
 "default": "frank",
 "help": "Enter the name to use",
}

SUBCOMMANDS = {
 "test": {
 "help": "Used to test",
 "desc": "When running in test mode, things will be tested",
 },
 "apply": {
 "help": "Used to apply",
 "desc": "When running in apply mode, things will be applied",
 },
}

In the above example, the –name option is made available to the root and all
subcommands.

Advanced Topics

Root Rewriting with root_dir

If you define a root_dir config option in your main application, the root rewriting
system is enabled (but is not necessarily active) for your application and all its plugins.

The default value for root_dir should be “/”.

Explicitly setting root_dir=/ at run time guarantees that root rewriting will not be activated.

Activating Root Rewriting

Eligible config options are modified if root_dir is set either manually or automatically.

Setting root_dir via config file, environment variable or command line takes priority.

If root_dir is not set and the program is run as a non-root user, root_dir is automatically
set to “.{program_name}” in the user’s home directory.

Eligible Config Options

Config options for your program (including its plugins) may be rewritten if the following are all true:

	The config option name ends in _dir, _path or _file

	The config option has a default that is an absolute path

	The config option has a default that includes its pop project name as a path component

Assuming your project is named “foo”:

CONFIG = {
 "root_dir": {"default": "/"},
 "a_dir": {"default": "/var/log/foo"},
 "b_file": {"default": "/var/log/foo"},
 "c_path": {"default": "/var/log/foo/"},

 "w": {"default": "/var/log/foo"}, # doesn't end in _dir/_path/_file
 "x_dir": {"default": "/var/log/foobar"}, # foo isn't a path component
 "y_dir": {"default": "/var/log/"}, # project/plugin name not in path
 "z_dir": {"default": "path/to/foo"}, # not an absolute path
}

Variables a-c may be rewritten, w-z will never be automatically rewritten by the root system.

When rewritten, the new root_dir is prepended to variables. If you set root_dir to myroot,
options will be set as if these were your defaults:

CONFIG = {
 "root_dir": {"default": "myroot"},
 "a_dir": {"default": "myroot/var/log/foo"},
 "b_file": {"default": "myroot/var/log/foo"},
 "c_path": {"default": "myroot/var/log/foo/"},
}

A explicitly set option via config file, environment variable or command line will override
these rewritten values, if you set root_dir=myroot and a_dir=/var/log/foo, a_dir
will be preserved as if this were your config block:

CONFIG = {
 "root_dir": {"default": "myroot"},
 "a_dir": {"default": "/var/log/foo"},
 "b_file": {"default": "myroot/var/log/foo"},
 "c_path": {"default": "myroot/var/log/foo/"},
}

Disabling Root Rewriting

If you are a developer and do not want to enable the roots system, do not
provide a root_dir config option. If you want to use root_dir in your
project without root rewriting, consider naming it root or root_path.

If you are a user and do not want default paths to be rewritten, explicitly
set root_dir to “/”, the default value.

Similarly, if you explicitly set any _dir, _path or _file config variable
to the default value, it will not be rewritten.

App Merging

Source

By default the CLI_CONFIG references the local CONFIG setting. The source
option allows you to reference a documented configuration from a separate
project configuration. This powerful option allows you to manage the arguments
and flags in a namespace of an app that is being merged into this app. The
benefit here is that the CONFIG values do not need to be rewritten and you
maintain a single authoritative source of documentation.

When using source in the CLI_CONFIG the namespace that defined the option
in the CONFIG dictionary will own the option. This makes it easy to have
an application that uses its own config namespace be app merged into another
application that can then transparently manage the configuration of the
merged app.

Therefore, if we have 2 projects’ conf.py files, one can reference the other.
The source option references the project name. So if the first file is in
project “test” and the second file is for project “other”, an argument
can reference the conf.py in project “other”:

test
.. code-block:: python

	CLI_CONFIG = {

	“test”: {},
“oranges”: {

“source”: “other”,

},

}

	CONFIG = {

	
	“test”: {

	“default”: “Red”,
“help”: “What color to test”,

},

}

other

CLI_CONFIG = {
}

CONFIG = {
 "oranges": {
 "default": "Many",
 "help": "The amount of oranges to enjoy.",
 },
}

Dyne

A powerful option in the CLI_CONFIG is dyne. This uses vertical app
merging to modify another application’s cli options. This allows a vertical
app merge repo to define cli arguments that will be made available when the
plugins are installed to extend an external app.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to pop-config

 		
 Introduction: conf.py File

 		
 Dictionaries Overview

 		
 Steps for Using pop-config

 		
 CONFIG Dictionary

 		
 Basic Settings

 		
 Destination

 		
 Location

 		
 CLI_CONFIG Dictionary

 		
 Options

 		
 Positional Arguments

 		
 Accepting Environment Variables

 		
 Actions

 		
 Number of Arguments

 		
 Integer (1)

 		
 Question Mark (?)

 		
 Asterisk (*)

 		
 Plus (+)

 		
 Type

 		
 Render

 		
 SUBCOMMANDS Dictionary

 		
 Detecting the Subparser

 		
 Global Subcommand Options

 		
 Advanced Topics

 		
 Root Rewriting with root_dir

 		
 Activating Root Rewriting

 		
 Eligible Config Options

 		
 Disabling Root Rewriting

 		
 App Merging

 		
 Source

 		
 Dyne

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

