
pop-config
Release 6.11

Sep 15, 2021

Contents:

1 Introduction: conf.py File 3

2 Dictionaries Overview 5

3 Steps for Using pop-config 7

4 CONFIG Dictionary 9
4.1 Basic Settings . 9
4.2 Destination . 10
4.3 Location . 10

5 CLI_CONFIG Dictionary 11
5.1 Options . 12
5.2 Positional Arguments . 12
5.3 Accepting Environment Variables . 13
5.4 Actions . 13
5.5 Number of Arguments . 14
5.6 Type . 15
5.7 Render . 15

6 SUBCOMMANDS Dictionary 17
6.1 Detecting the Subparser . 18

7 Advanced Topics 19
7.1 Root Rewriting with root_dir . 19

8 App Merging 21
8.1 Source . 21
8.2 Dyne . 22

9 Indices and tables 23

i

ii

pop-config, Release 6.11

pop-config is a core component of POP and a key part of POP’s ability to “app merge” applications.

The word “config” has a lot of different meanings depending on context, so it’s important that we clarify the capabilities
of pop-config. In the world of POP, think of “config” as referring to command-line arguments for a program, plus
a bunch of other cool functionality related to command-line arguments. It might be best to pretend pop-config is
actually named pop-args. This would be a more accurate name and better convey its functionality.

The reason why the name pop-config is used may be that pop-config has a lot of very useful functionality, and
taken as a whole, can often be used to manage the entire configuration of your application. For example, pop-config
allows you to:

• Define command-line arguments for your application.

• Optionally set these command-line arguments via environment variables.

• Optionally source these command-line arguments from a file.

• Merge in plugins which augment the command-line arguments of your application.

The important thing to keep in mind is that all this functionality is argument-centric, and yes, many applications will
find their configuration needs fully satisfied by pop-config.

But it’s really pop-args :) Just keep that in the back of your head. It will help.

Contents: 1

pop-config, Release 6.11

2 Contents:

CHAPTER 1

Introduction: conf.py File

pop-config uses a conf.py file to define its functionality. The conf.py file should be located in the main
directory of your POP project. So let’s assume the directory for your source code is my-project, and your POP
project inside it is called my_project (as created by pop-seed or pop-create). In this case, your conf.py
file will be located at my-project/my_project/conf.py, and directories for POP subs for your project will
appear next to the conf.py (in the same directory.)

One conf.py exists per POP project. conf.py can contain four Python dictionaries: CONFIG, CLI_CONFIG,
SUBCOMMANDS and DYNE. Each dictionary serves a specific purpose. Between them you can define how the
command-line arguments are presented, all configuration defaults, help documentation, etc. Here are the purposes
of each dictionary:

3

pop-config, Release 6.11

4 Chapter 1. Introduction: conf.py File

CHAPTER 2

Dictionaries Overview

DYNE:

The DYNE dictionary is used to allow your POP project to define dynamic names. Dynamic names
are plugin subsystems that are shared across multiple projects and dynamically discovered. This allows
you to, for example, have one “super-command” which can find a bunch of plugins that were installed
by multiple different Python projects. All the plugins are organized under a dyne name. Each project
maps the dyne name to a path inside its source code. The plugins in this directory are made available to
other projects when the dyne is added via a call to hub.pop.sub.add(dyne_name="foo"). Then
hub.foo.plugin_name_1, hub.foo.another_plugin will be available on the hub. You can
also introspect on the plugins available via for plugin in hub.foo:, for example.

CLI_CONFIG:

CLI_CONFIG is a dictionary that defines command-line arguments for your application. The command
line arguments defined here will be accessible at hub.OPT.pop_project_name.foo or hub.
OPT["pop_project"]["foo"] (assuming an option of --foo), for example. Each POP project
has a single namespace for command-line options. The keys and values used in CLI_CONFIG will be
very familiar if you have used the argparse module in Python.

Please see the CLI_CONFIG Dictionary section for more details on how to use CLI_CONFIG.

CONFIG:

CONFIG is a dictionary that defines “configuration” for your application, which are settings, but ones
that are not available on the command-line. Configuration defined in CONFIG, while not settable on the
command-line, is still accessible via hub.OPT.

Where are CONFIG settings sourced from, if not from the command-line? Typically, they are simply
default values, potentially overridable via a pop-config YAML configuration file.

Please see the CONFIG Dictionary section for more details on how to use CONFIG.

SUBCOMMANDS:

Think of SUBCOMMANDS as a companion to CLI_CONFIG. SUBCOMMANDS allows you to define higher-
level actions on the command-line, each with their own separate arguments. For example, you may
have mycmd list as well as mycmd commit. The subcommand is specified as just a literal string.

5

https://pop.readthedocs.io/en/latest/topics/subs_overview.html#dynamic-name

pop-config, Release 6.11

Command-line arguments defined in CLI_CONFIG can be specified as being specific to a subcommand
or can be made available to all subcommands.

Please see the SUBCOMMANDS Dictionary section for more details on subcommands.

6 Chapter 2. Dictionaries Overview

CHAPTER 3

Steps for Using pop-config

To use pop-config, at the bare minimum you will want to create a conf.py for your project at my-project/
my_project/conf.py. It’s important to note that there is only one conf.py per POP project, and only one set
of config per conf.py.

In conf.py, you will define CLI_CONFIG to specify all command-line options for your application. Here is an
example of a CLI_CONFIG definition:

CLI_CONFIG = {
"force": {"options": ["--force"], "action": "store_true", "default": False},
"nopush": {"options": ["--nopush"], "action": "store_true", "default": False},
"prod": {"options": ["--prod"], "action": "store_true", "default": False},
"db": {"options": ["--db"], "action": "store_true", "default": False},
"release": {"positional": True},

}

Then, somewhere in the startup code of your command, you will have something similar to the following Python code:

hub.pop.sub.add("my_project")
or hub.pop.sub.add(dyne_name="my_project") if you are using a dynamic name
hub.pop.config.load(["my_project"], cli="my_project")

After this last command finishes, the config defined in conf.py as well as any user-specified arguments will be
available on the hub at hub.OPT["my_project"].option_name. If you defined any subcommands via
SUBCOMMANDS, you will be able to determine the subcommand specified by inspecting the hub.SUBPARSER
variable, which is a string that specifies the subcommand. Any subcommand-specific options will be accessible at
hub.OPT["my_project"].option_name – there is no special hierarchy for subcommand options – they are
just mapped to the same place as regular options.

Once this initialization is done, then various parts of your application can look at hub.OPT["my_project"] and
use the settings found to influence its behavior. Because hub.OPT is globally available to all POP functions, you do
not need to pass around these options as arguments to functions and can read them from a central, consistent location
on the hub.

7

pop-config, Release 6.11

8 Chapter 3. Steps for Using pop-config

CHAPTER 4

CONFIG Dictionary

The CONFIG dictionary is used to define settings in your application that may or may not also be settable on the
command-line. This means that the bulk of your application’s settings will be defined in the CONFIG dictionary, even
if only to serve as a place to define their default setting and help string.

CONFIG = {
"name": {

"default": "frank",
"help": "Enter the name to use",

},
}

This simple example creates a config setting called name and sets sets the documentation for the configuration value
and what the default value should be.

If we then wanted to allow name to be set from the command-line, we would add a companion entry to CLI_CONFIG,
which might look like this:

CLI_CONFIG = {
"name": {}

}

We could now set the value of name via the --name foo or --name=foo option.

It is also possible that we may have things in CONFIG that simply aren’t settable via the command-line and are never
intended to be. These options can be overridden using pop-config configuration files (see Using Configuration
Files).

4.1 Basic Settings

Nearly every config setting needs to have 2 basic options, default and help. These are very self explanatory, default
sets the default value of the option if no option is passed and help presents, not only the command line help, but is also
the single source of documentation for the option.

9

pop-config, Release 6.11

Here is a simple example:

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

This establishes the basic data for the setting and is all that is needed for settings in the CONFIG dictionary.

4.2 Destination

When the argument is named “test” it will appear on the option namespace as “test”. This may not always be desirable.
If the name of the option and where it needs to be stored differs, then use the dest option:

CONFIG = {
"test": {

"default": "Red",
"dest": "cheese",
"help": "What color to test",

},
}

In this example the option will be stored under the name “cheese”, accessible at hub.OPT["my_project"].
cheese.

4.3 Location

Once the config system has been run, all configuration data will appear in the hub.OPT namespace. This means that
in our above example, if the system in question is part of an app named myapp, then the option data will be present
at hub.OPT[“myapp”][“test”]. Because we use special dictionaries, it is also possible to access this value as hub.
OPT.myapp.test. This works fine as long as there are no hyphens in your project name or option, in which case
the index-based access method can be used.

10 Chapter 4. CONFIG Dictionary

CHAPTER 5

CLI_CONFIG Dictionary

The CLI_CONFIG dictionary is used to expose a setting on the command-line of your application so it can be changed.
Any values set in CLI_CONFIG will inherit settings from CONFIG, so that if you have a name key in both dictionar-
ies, the final settings for the command-line options will inherit the CONFIG settings, too.

All options that appear on the CLI need to be activated in the CLI_CONFIG but the basic configuration needs to be in
the CONFIG dictionary.

Pop-config uses Python’s venerable argparse under the hood to present and process the arguments. Pop-config will
also, transparently, passes options from the dictionary into argparse, this makes Pop-config transparently compatible
with new argparse options that are made available.

This document is intended, therefore, to present the most commonly used options, please see the argparse doc for
more in depth data on available options.

If the command-line option is very simple it can be as simple as just doing this:

CLI_CONFIG = {
"test": {},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

This would present a command-line option --test which can be specified as --test=red or --test blue.

This document will cover all available options for the CLI_CONFIG, remember that the default and help values should
always be in the CONFIG section. This is a POP best practice.

11

pop-config, Release 6.11

5.1 Options

By default the options presented on the command line are identical to the name of the value. So for the above example
the presented option would be –test. If alternative options are desired, they can be easily added:

CLI_CONFIG = {
"test": {

"options": ["-t", "--testy-mc-tester", "-Q"],
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

5.2 Positional Arguments

Positional arguments are very common and can create a much more user friendly experience for users. Adding posi-
tional arguments are easy. Just use the positional argument:

CLI_CONFIG = {
"test": {

"positional": True,
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

It would now be possible to specify the argument as mycmd foo (without needing a --test).

When working with multiple positional arguments the display_priority flag can be used to control their order:

CLI_CONFIG = {
"test": {

"positional": True,
"display_priority": 2,

},
"run": {

"positional": True,
"display_priority": 1,

},
}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

(continues on next page)

12 Chapter 5. CLI_CONFIG Dictionary

pop-config, Release 6.11

(continued from previous page)

},
"run": {

"default": "green",
"help": "What color to run",

},
}

In the above example the first argument will be run and the second will be test.

5.3 Accepting Environment Variables

Operating systems allow for configuration options to be passed in via specific means. In Unix based systems like
Linux and MacOS, environment variables can be used. In Windows based systems the registry can be used. To allow
for an os variable to be used just add the os option:

CLI_CONFIG = {
"test": {

"os": "MYAPP_TEST",
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

Now the flag can be set by setting the environment variable MYAPP_TEST to the desired configuration value.

5.4 Actions

Actions allow a command line argument to perform an action, or flip a switch.

The action option passes through to argparse, if the examples in this document do not make sense you can also check
the argparse section on action.

A number of actions are supported by argparse. Arguable the most frequently used actions are store_true and
store_false:

CLI_CONFIG = {
"test": {

"action": "store_true",
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

5.3. Accepting Environment Variables 13

pop-config, Release 6.11

A few other useful actions are append and count. If append is used then every time the argument is used the option
passed to the argument is appended to the final list. The count option allows for the number of times that the argument
is passed to be counted up. This is useful for situations where you want to specify what the verbosity of the output
should be, so that you can pass -vvv in a similar fashion to ssh.

5.5 Number of Arguments

The number of arguments that should be expected can also be set using the nargs option. This allows for a specific or
fluid number of options to be passed into a single cli option.

The nargs option passes through to argparse, if the examples in this document do not make sense you can also check
the argsparse section on nargs.

5.5.1 Integer (1)

Specifying an integer defines the explicit number of options to require:

CLI_CONFIG = {
"test": {

"nargs": 3,
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

The above example will require that exactly 3 options are passed to –test.

5.5.2 Question Mark (?)

One argument will be consumed from the command line if possible, and produced as a single item. If no command-line
argument is present, the value from default will be produced.

5.5.3 Asterisk (*)

All command-line arguments present are gathered into a list.

CLI_CONFIG = {
"test": {

"nargs": "*",
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

(continues on next page)

14 Chapter 5. CLI_CONFIG Dictionary

pop-config, Release 6.11

(continued from previous page)

},
}

5.5.4 Plus (+)

Just like ‘*’, all command-line args present are gathered into a list. Additionally, an error message will be generated if
there wasn’t at least one command-line argument present.

5.6 Type

The value type can be enforced with the type option. A type can be passed in that will be enforced, such as int or str.

CLI_CONFIG = {
"test": {

"type": int,
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

5.7 Render

Sometimes it is desirable to load up complex data structures from the command line. This can be done with the render
option. The render option allows you to specify that the argument passed will be rendered using a data serialization
medium such as json or yaml.

CLI_CONFIG = {
"test": {

"render": "yaml",
},

}

CONFIG = {
"test": {

"default": "Red",
"help": "What color to test",

},
}

This cli could then look like this:

myapp --test "Food: true"

Then the resulting value would be: {“Food”: True}

5.6. Type 15

pop-config, Release 6.11

16 Chapter 5. CLI_CONFIG Dictionary

CHAPTER 6

SUBCOMMANDS Dictionary

Sometimes it is desirable to have subcommands. Subcommands allow your CLI to work in a way similar to the git cli,
where you have multiple routines that all can be called from a single command.

This example shows how multiple subcommands can be defined and utilized.

CLI_CONFIG = {
"name": {

"subcommands": ["test", "apply"],
},
"weight": {},
"power": {

"subcommands": ["apply"],
},

}
CONFIG = {

"name": {
"default": "frank",
"help": "Enter the name to use",

},
"weight": {

"default": "150",
"help": "Enter how heavy it should be",

},
"power": {

"default": "100",
"help": "Enter how powerful it should be",

},
}

SUBCOMMANDS = {
"test": {

"help": "Used to test",
"desc": "When running in test mode, things will be tested",

},
"apply": {

(continues on next page)

17

pop-config, Release 6.11

(continued from previous page)

"help": "Used to apply",
"desc": "When running in apply mode, things will be applied",

},
}

In this example we see that the option name will be available under the subcommands test and apply. The option
power will be available only under the subcommand apply and the option weight is globally available.

6.1 Detecting the Subparser

When the subparser is used the desired subparser is set on the hub as the variable hub.SUBPARSER. This makes it easy
to know what subparser is being used anywhere in your code:

def run(hub):
if hub.SUBPARSER == "test":

run_test()
elif hub.SUBPARSER == "apply":

run_apply()

6.1.1 Global Subcommand Options

Sometimes an option should be made available to all subcommands, including the root of the command. It is easy to
do this! Just add the option _global_ to the list of subcommands.

CLI_CONFIG = {
"name": {

"subcommands": ["_global_"],
},

}
CONFIG = {

"name": {
"default": "frank",
"help": "Enter the name to use",

}

SUBCOMMANDS = {
"test": {

"help": "Used to test",
"desc": "When running in test mode, things will be tested",

},
"apply": {

"help": "Used to apply",
"desc": "When running in apply mode, things will be applied",

},
}

In the above example, the –name option is made available to the root and all subcommands.

18 Chapter 6. SUBCOMMANDS Dictionary

CHAPTER 7

Advanced Topics

7.1 Root Rewriting with root_dir

If you define a root_dir config option in your main application, the root rewriting system is enabled (but is not neces-
sarily active) for your application and all its plugins.

The default value for root_dir should be “/”.

Explicitly setting root_dir=/ at run time guarantees that root rewriting will not be activated.

7.1.1 Activating Root Rewriting

Eligible config options are modified if root_dir is set either manually or automatically.

Setting root_dir via config file, environment variable or command line takes priority.

If root_dir is not set and the program is run as a non-root user, root_dir is automatically set to “.{program_name}” in
the user’s home directory.

7.1.2 Eligible Config Options

Config options for your program (including its plugins) may be rewritten if the following are all true:

• The config option name ends in _dir, _path or _file

• The config option has a default that is an absolute path

• The config option has a default that includes its pop project name as a path component

Assuming your project is named “foo”:

CONFIG = {
"root_dir": {"default": "/"},
"a_dir": {"default": "/var/log/foo"},

(continues on next page)

19

pop-config, Release 6.11

(continued from previous page)

"b_file": {"default": "/var/log/foo"},
"c_path": {"default": "/var/log/foo/"},

"w": {"default": "/var/log/foo"}, # doesn't end in _dir/_path/_file
"x_dir": {"default": "/var/log/foobar"}, # foo isn't a path component
"y_dir": {"default": "/var/log/"}, # project/plugin name not in path
"z_dir": {"default": "path/to/foo"}, # not an absolute path

}

Variables a-c may be rewritten, w-z will never be automatically rewritten by the root system.

When rewritten, the new root_dir is prepended to variables. If you set root_dir to myroot, options will be set as if
these were your defaults:

CONFIG = {
"root_dir": {"default": "myroot"},
"a_dir": {"default": "myroot/var/log/foo"},
"b_file": {"default": "myroot/var/log/foo"},
"c_path": {"default": "myroot/var/log/foo/"},

}

A explicitly set option via config file, environment variable or command line will override these rewritten values, if
you set root_dir=myroot and a_dir=/var/log/foo, a_dir will be preserved as if this were your config block:

CONFIG = {
"root_dir": {"default": "myroot"},
"a_dir": {"default": "/var/log/foo"},
"b_file": {"default": "myroot/var/log/foo"},
"c_path": {"default": "myroot/var/log/foo/"},

}

7.1.3 Disabling Root Rewriting

If you are a developer and do not want to enable the roots system, do not provide a root_dir config option. If you want
to use root_dir in your project without root rewriting, consider naming it root or root_path.

If you are a user and do not want default paths to be rewritten, explicitly set root_dir to “/”, the default value.

Similarly, if you explicitly set any _dir, _path or _file config variable to the default value, it will not be rewritten.

20 Chapter 7. Advanced Topics

CHAPTER 8

App Merging

8.1 Source

By default the CLI_CONFIG references the local CONFIG setting. The source option allows you to reference a
documented configuration from a separate project configuration. This powerful option allows you to manage the
arguments and flags in a namespace of an app that is being merged into this app. The benefit here is that the CONFIG
values do not need to be rewritten and you maintain a single authoritative source of documentation.

When using source in the CLI_CONFIG the namespace that defined the option in the CONFIG dictionary will own
the option. This makes it easy to have an application that uses its own config namespace be app merged into another
application that can then transparently manage the configuration of the merged app.

Therefore, if we have 2 projects’ conf.py files, one can reference the other. The source option references the project
name. So if the first file is in project “test” and the second file is for project “other”, an argument can reference the
conf.py in project “other”:

test .. code-block:: python

CLI_CONFIG = { “test”: {}, “oranges”: {

“source”: “other”,

},

}

CONFIG = {

“test”: { “default”: “Red”, “help”: “What color to test”,

},

}

other

21

pop-config, Release 6.11

CLI_CONFIG = {
}

CONFIG = {
"oranges": {

"default": "Many",
"help": "The amount of oranges to enjoy.",

},
}

8.2 Dyne

A powerful option in the CLI_CONFIG is dyne. This uses vertical app merging to modify another application’s cli
options. This allows a vertical app merge repo to define cli arguments that will be made available when the plugins
are installed to extend an external app.

22 Chapter 8. App Merging

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

23

	Introduction: conf.py File
	Dictionaries Overview
	Steps for Using pop-config
	CONFIG Dictionary
	Basic Settings
	Destination
	Location

	CLI_CONFIG Dictionary
	Options
	Positional Arguments
	Accepting Environment Variables
	Actions
	Number of Arguments
	Type
	Render

	SUBCOMMANDS Dictionary
	Detecting the Subparser

	Advanced Topics
	Root Rewriting with root_dir

	App Merging
	Source
	Dyne

	Indices and tables

